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1. Introduction

The aging of irrigation infrastructure poses 

significant challenges. Concrete structures 

deteriorate due to internal defects1), aging, and 

varying loads, requiring regular inspection for 

safety and functionality. In Japan, a substantial 

number of concrete irrigation structures require 

extensive repairs2). To address these challenges, 

there's a growing need for enhanced maintenance 

efforts and automated Non-Destructive Evaluation 

(NDE) techniques, such as computer vision-based 

damage assessment, to improve efficiency and 

accuracy in identifying structural issues. A 

Convolutional Neural Network (CNN) is a 

powerful tool for surface damage segmentation 

and its evaluation3). By employing this approach, 

alongside other automated NDE techniques, the 

infrastructure engineers can effectively prioritize 

maintenance efforts, ensuring the safety and 

longevity of aging structures in a resource-

constrained environment. 

2. Materials and Methods

2.1. Dataset preparation 

 The training dataset contains grayscale images 

acquired by a medical X-ray CT machine. Scanned 

concrete cores were drilled out from the in-service 

irrigation structure located in Japan. Input CT 

images have a resolution of 512  512 pixels. Fig. 

1 represents the raw CT image and its ground 

truths for each concrete phase. All concrete 

particles are labelled and represented as binary 

images. The split ratio for the training and 

validation dataset is 0.8:0.2. To diversify the 

dataset and enhance generalization, data 

augmentation techniques are applied. 

Fig. 1. Training dataset. 

2.2. U-net architecture 

 The U-Net model4), designed for semantic 

segmentation tasks, effectively segments concrete 

particles in CT images by learning to classify each 

pixel into specified classes. U-shaped architecture 

and skip connections enable precise feature 

localization. During training, Adam optimizer 

with a learning rate of 0.001 is used, and 

hyperparameters are manually optimized. Binary 

cross-entropy loss function measured the 

discrepancy between predicted and actual pixel-

wise classifications, aiding in effective model 

optimization for structural assessment and 

maintenance of concrete infrastructures.  

2.3. Evaluation Metrics 

In this research, Intersection over Union (IoU) 

(Eq. 1) and Dice coefficient (F1 score) (Eq. 2) are 

utilized to quantify the agreement between 

predicted and ground truth segmentations. These 

metrics provided comprehensive insights into the 

effectiveness of the U-Net model in accurately 

delineating concrete particles from CT images. 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, (1) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, (2) 

where TP is the number of true positive pixels, FP 

is the number of false positive pixels and FN is the 

number of false negative pixels. 

3. Results and Discussion

3.1. Hyperparameter optimization 

During the result analysis, the issue of 

overfitting became apparent, concerning the 

segmentation of all concrete particles. This 

challenge is closely linked to the complex 

structure of the input CT images, which contain 

numerous objects within a single image. 

Furthermore, the limited size of the dataset 
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reinforces this problem. To address this challenge, 

a hyperparameter optimization procedure is 

employed. Five hyperparameters are optimized 

represented in Table 1. Fig. 2 depicts the 

generalized losses during training and validation. 

 

3.2. Segmentation results 

The output of the U-Net segmentation model 

comprises probability maps for each pixel in the 

input image, indicating the likelihood of 

belonging to one of three classes: aggregate, void, 

or crack. Subsequent thresholding at 0.5 yields 

binary segmentation masks for each class (Fig. 3). 

Pixels with probabilities exceeding or equal to 0.5 

are classified into their respective classes, while 

those below 0.5 are deemed background. Notably, 

for the crack class, a lower probability threshold 

may be employed. On Fig. 3, the significant cracks 

characterized by a high density of air within a 

small fracture volume are illustrated with 0.5 

threshold. Decreasing the threshold extends 

segmentation to encompass more small cracks, 

attributed to the challenge posed by the low 

contrast between the solid matrix and existing 

fractures, which complicates essential feature 

extraction for accurate segmentation. 

 

3.3. Model accuracy 

The segmentation model demonstrates notable 

performance discrepancies across different classes 

as depicted in the confusion matrix (Table 1). 

Aggregates exhibit strong segmentation accuracy 

with high IoU (0.813) and F1 score (0.896). 

However, the model's performance is more 

moderate for voids and cracks, characterized by 

IoU (0.566 and 0.088) and F1 score (0.722 and 

0.161), respectively. This discrepancy can be 

attributed to the considerably smaller area of voids 

and cracks compared to aggregates. Moreover, 

crack segmentation performance notably 

improves with higher probability thresholds, 

which is influenced by the manual annotation 

procedure. Due to the low contrast for cracks, 

there are challenges in appropriately labeling long 

and thin objects manually. As a result, 

underestimated metrics can be observed. 

 

4. Conclusions 

In this research, the deteriorated concrete 

structure was segmented successfully by the U-

Net with hyperparameters optimization which 

increased the segmentation accuracy. This 

approach will help to improve the future NDE 

methods for in-service irrigation structure 

assessment by damage quantification. 
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Table 1 Optimized hyperparameters 

Group 

name 
channel 

kernel 

size 

max. 

epoch 

batch 

size 

pool 

size 

Agg. 8 5 64 2 2 

 oid 16 3 15 3 2 

Crack 16 3 26 2 2 

 

 
Fig. 2. Learning curve. 

 

 
Fig. 3. Segmentation result. 

 

Table 2 Confusion matrix 
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